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• Data-enabled design as a fourth 
paradigm in materials science

• Physics agnostic v/s physics 
informed machine learning (ML)

• Can we find new materials or 
optimize existing ones using ML?

C. Draxl, M. Scheffler, NOMAD: The FAIR Concept for Big-Data-Driven Materials Science (2018), 
R Ramprasad et al. Machine learning in materials informatics: recent applications and prospects, 
NPJ Comp. Mater. 3, 54 (2017).
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Global Security 
& Threat Reduction

Medical Imaging High Energy Physics 
Experiments

Space Research

Radiation detector materials — including scintillators — 
are also critical to a number of applications as well as 
existing and upcoming experimental facilities of direct 
interest to LANL, e.g., ECSE, MaRIE and p-RAD.
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Discovery and Design of Novel Scintillators

Scintillator 
discovery and 

development has 
largely been guided 

by chemical 
intuition and 

laborious trial-and-
error based 

experimentation.
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Scintillator versus Non-Scintillator Screening

Scintillator Performance
Light output, decay time, 

radiation tolerance, 
mechanical strength, 
attenuation length…

Electronic Structure
Band gap, band 

dispersion, dielectric 
screening, activator levels,

trap states, phonons…

• Electronic structure directly dictates the scintillator 
performance portfolio

• In Ln-doped inorganic scintillator chemistries, position of 
the activator levels with respect to the band edges can be 
used for a high throughput screening.

Amenable to bandgap 
engineering
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Putting the Right Physics in the ML Models

• A knowledge of the “U” and “D” parameters combined with Dorenbos’ chemical shift model‡ and 
DFT-based electronic structure computations for the bandgap allows for an accurate prediction 
of the 4f and 5d1 levels of a lanthanide activator in a given host chemistry.

‡P. Dorenbos, Physical Review B 85, 165107 (2012).

• The “U” parameter is 
a measure of f shell 
e-e repulsion in the 
lanthanide activator 

• The “D” parameter is 
primarily governed 
by crystal field 
around the dopant
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Applications to Perovskites and Elpasolites

G. Pilania, S. K. Yadav, M. Nikl, B. P. Uberuaga, and C. R. Stanek, Phys. Rev. Appl. accepted (2018).
G. Pilania, K. Mcclellan, C. R. Stanek and B. P. Uberuaga, J. Chem. Phys. 148, 241729 (2018).
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ML Predictions of Ce+3 4f and 5d1 levels for A2(B,B’)X6 Elpasolites

A, B ∈ {Li, Na, K, Rb, Cs}
B’ ∈ {Sc, Y, La, Ce, Nd, Eu, Gd, Er} 
X ∈{F, Cl, Br, I}  
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